
Parallelization of ARC3D

with Computer-Aided Tools

Haoqiang Jin 1, Michelle Hribar 1 and Jerry Yan 1

NAS Technical Report NAS-98-005 April 1998

hjin@nas.nasa.gov

NAS Parallel Tools Group

NASA Ames Research Center

Mail Stop T27A-1

Moffett Field, CA 94035-1000

Abstract

A series of efforts have been devoted to investigating methods of porting and

parallelizing applications quickly and efficiently for new architectures, such as

the SGI Origin 2000 and Cray T3E. This report presents the parallelization of

a CFD application, ARC3D, using the computer-aided tools, CAPTools. Steps

of parallelizing this code and requirements of achieving better performance are

discussed. The generated parallel version has achieved reasonably well perfor-

mance, for example, having a speedup of 30 for 36 Cray T3E processors. How-

ever, this performance could not be obtained without modification of the original

serial code. It is suggested that in many cases improving serial code and per-

forming necessary code transformations are important parts for the automated

parallelization process although user intervention in many of these parts are still

necessary. Nevertheless, development and improvement of useful software tools,

such as CAPTools, can help trim down many tedious parallelization details and

improve the processing efficiency.

1. MRJ Technology Solutions, Inc., NASA Contract NAS2-14303, Moffett Field, CA 94035-1000





Parallelization of ARC3D with Computer-Aided Tools

Haoqiang Jin, Michelle Hribar and Jerry Yan

MRJ Technology Solutions, NASA Ames Research Center

Moffett Field, CA 94'035-1000

Abstract

A series of efforts have been devoted to investigating methods of porting and paralleliz-

ing applications quickly and efficiently for new architectures, such as the SGI Origin

2000 and Cray T3E. This report presents the parallelization of a CFD application,

ARC3D, using the computer-aided tools, CAPTools. Steps of parallelizing this code

and requirements of achieving better performance are discussed. The generated par-

allel version has achieved reasonably well performance, for example, having a speedup

of 30 for 36 Cray T3E processors. However, this performance could not be obtained

without modification of the original serial code. It is suggested that in many cases im-

proving serial code and performing necessary code transformations are important parts

for the automated parallelization process although user intervention in many of these

parts are still necessary. Nevertheless, development and improvement of useful software

tools, such as CAPTools, can help trim down many tedious parallelization details and

improve the processing efficiency.

1 Introduction

The procurement of numerous high-performance computing systems at the NAS facility at NASA

Ames Research Center over the past ten years has translated to repeated efforts of on adapting

and porting both serial and parallel applications to the new systems. Several approaches have been

pursued to facilitate the porting of parallel applications: rewriting the code by hand using message

passing libraries, insertion of compiler directives to aid parallelizing compilers, and employing

computer-aided tools.

The effectiveness of these approaches can be evaluated from several perspectives: ease of use,

amount of work, portability, and efficiency. Programming by hand using message passing libraries

usually achieves the best performance but is very time consuming, often prone to error. With data

parallel languages and compiler directives, one can generate parallel code quickly, but often cannot

attain good performance without extensive tuning. Automated parallel tools generally lack stability

and have limitations in their ability to handle broad application areas. Even with these limitations,

using compiler directives and computer-aided tools to parallelize the NAS Benchmarks [1] have

shown promising results. The process of parallelization took a fraction of the effort that was

needed for hand-coding and the performance of the generated codes in some cases is getting closer

to the hand-coded versions [2].

To continue this effort, we extended our study to a moderate size computational fluid dy-

namics (CFD) application, ARC,3D [3]. ARC3D solves Euler and Navier-Stokes equations in three

dimensions using a single rectilinear grid. Unlike the NAS benchmarks, ARC3D contains a tur-

bulent model and a more realistic boundary condition. The Beam-Warming algorithm is used to



approximatelyfactorizean implicit schemeof finitedifferenceequations,whichis thensolvedalter-
natively in threedirections.The implementedAlternatingDirectionImplicit (ADI) solversweeps
througheachof the cardinaldirectionsoneat a time, with partial updatingof the fieldsafter each
sweep.

ARC3D hasbeenparallelizedon the SGI Origin2000 system using compiler directives [4]

(http :I/science. nas.nasa, govlPubslNASnews/97/07/article01, html). Much of the effortin

thiswork involvedthe optimizationof cache performance and array localityon the distributed

shared-memory system. Preliminaryresultsfrom show promise forachievingvery high sustained

performance levels.We reporthere resultsofparallel/zingARC3D with the Computer-Aided Par-

allelizationToolkit (CAPTools) [5],a toolset that automates the generationof message-passing

parallel programs with certain user intervention. We first briefly describe CAPTools and the com-

putational environment, then discuss the steps taken in paralleliz_tion and optimization, and last

present test results on the Origin2000 and the Cray T3E.

2 Computational Environment

The parallelization of ARC3D was done through CAPTools [5] -- a software toolkit that automates

the generation of message-passing parallel code -- is developed at the University of Greenwich,

United Kingdom (http://www.gre.ac.uk/~captools). CAPTools accepts FORTRAN-77 serial

code as input, performs extensive dependence analysis, and uses domain decomposition to exploit

parallelism. This approach is applicable to codes in computational aeroscience as well as many

other types of science that use large spatial domains. CAPTools incorporates user knowledge in

order to perform more accurate dependency analysis and, thus, produce more efficient parallel

code. Lastly, CAPTools generates parallel codes that contain portable interface to message passing

libraries, such as MPI and PVM, through a low-overhead layer (CAPLib). The user is able to

perform more tuning later on and even to maintain the parallel code.

The performance of generated parallel codes was tested on two platforms: an SGI Origin2000

system and a Cray T3E system. The Origin2000 installed at NAS (http://www.nas.nasa.gov/)

is composed of 64 RISC-based central processing units (CPUs), with 16 gigabytes (GB) of globally

addressable main memory, and 330 GB of available disk space. Each processor has two levels of

separate data and instruction caches (32KB for L1 and 4MB for L2, two-way set associative). The

system incorporates the Non-Uniform Memory Access (NUMA) architecture, a design that allows

the construction of large systems with hundreds or even thousands of processors at a modest cost.

The Cray T3E at NASA/Goddard Space Flight Center (http ://www. gsfc. nasa. gov/) con-

sists of 512 processor elements (PEs), 64 gigabytes of globally addressable memory, and 480-gigabyte

disk. Each PE is a 64-bit DEC Alpha microprocessor (300 MHz) with an 8 KB primary data cache

and a 96 KB secondary cache that is three-way set associative.



3 Parallelization of ARC3D

3.1 Brief Description of ARC3D

To facilitate the discussion of parallelizing ARC3D, the basic structure of this code is first presented.

As mentioned in Section 1, ARC3D uses an implicit scheme to solve Euler and Navier-Stokes

equations in a three-dimensional (3D) rectilinear grid. The main component is an Alternating

Direction Implicit (ADI) solver, which results from the _pproximate factorization of finite difference

equations. The actual implementation of the ADI solver (subroutine STEPF3D) in the serial ARC3D

is illustrated in Figure 1.

For each time step, the solver

first sets up boundary conditions

(BC), forms the explicit right-hand-

side (RHS) with artificial dissipation

terms (FILTER3D), and then sweeps

through three directions (_-X, TI-Y

and C-Z) to update the 5-element

fields, separately. Each sweeping con-

sists of forming and solving a series

of scalar penta-diagonal systems in a

two-dimensional plane one at a time.

Two-dimensional arrays are created

from the 3D fields and are passed into

the penta-diagonal solvers (VPENTA3

for the first 3 elements and VPENTA

for the 4 and 5th elements, both orig-

inally being written for vector ma-

chines) which perform Gaussian elimi-

nations (forward and backward). The

solutions are then copied back to the

residual fields. Between sweepings

there are routines (TKINV, NPINV and

TK) to calculate eigenvector matrices

and perform matrix-matrix multipli-

BC

I

RHS

I

FILTER3D
I

TKINV

I

XI solver

I

NPINV

[

ETA solver

r

NPINV

I

t update solution

t [ Boundary Condition........ ]

........ [ Explicit Right-Hand-Side ]

t ........ Artificial Dissipation Terms

(X) For each L:

[ form LHS for (J,K) plane

........ [ VPENTA3 -- solve first 3

• [ VPENTA-- solve4 & 5

I [ (Y) For each L:

...... form LHS for (K,J) plane
[ [ VPENTA3 -- solve first 3

VPENTA-- solve4 & 5

(Z) For each K:

form LHS for (L,J) plane

VPENTA3 -- solve first 3

VPENTA -- solve 4 & 5

Figure 1: Block diagram of the ADI solver in the

serial version of ARC3D. More descriptions on

some of the blocks are given on the right side.
cations. Finally the solution is up-

dated for the current time step.

During the _/ (Y) and _ (Z) sweepings the copying of data between 2D and 3D arrays (as

implied by "forming LHS for (K, J) and (L, J) planes" in Figure 1) involves array transposition

which is "unfriendly" to cache-based RISC systems. The profile information of different blocks will

be further discussed in Section 4 when we compare pertbrmance.



3.2 The First Parallel Version

UsingCAPToolsto parallelizeARC3Dwasrelativelystraightforward.Theserialversionwasfirst
readinto CAPTools.A full dependenceanalysiswasperformedandtookabout fifteenminuteson
anSGIRh000workstation.Twoparallelcodesweregenerated:onewith 1-dimensionalpartitioning
andtheotherwith 2-dimensionalpartitioning.The "CopyRoutine" function in CAPTools was used

to duplicate routines VPENTA3 and VPENTA for the Z-solver (both 1-D and 2-D partitions) and the

Y-solver (2-D partition) in STEPF3D. The duplication is necessary since the data passed into these

two routines will have different data distributions for different solvers after the data partition is

done. One version of each routine cannot handle the two different data distributions.

The L (or Z) dimension of the solution data array was partitioned for the 1-D case and both L

and K dimensions (or Z and Y) were partitioned for the 2-D version. The final generation of parallel

codes had the following options selected: minimum slabs of 2, Gather/Scatter for communication,

reduced memory. The last option is necessary for the effective use of memory on large number of

processors.

The Automated Instrumentation Monitoring System (AIMS) [6] (http ://science. nas. nasa

.gov/Software/AIMS/) was used to collect aad visualize trace information from the execution.

AIMS automatically instruments either MPI or PVM message passing programs. Execution of the

instrumented codes will produce event traces which can be displayed by the visualizer, VK, later

on to pinpoint potential performance bottlenecks in parallel programs.

The trace data gathered from one ADI iteration (on 4 processors on an Origin2000) in the

1-D and 2-D partitioned versions of ARC3D are presented in Figure 2 as space-time diagrams. The

color bar (different shadings in gray scale) in the plot represents execution of different subroutines,

the white space between color bars indicates idle time due to waiting for a message or a barrier,

and the lines drawn across processors are messages.

In the 1-D version, there are a few messages exchanged in the beginning of the ADI solver

(BC and FILTER3D), no messages were used in solving for the X and Y directions. However, many

relatively small messages were generated from the pipelining calculations for planes along the Z

direction. Many idle-time gaps, as indicated by white spaces, are caused by frequently filling and

emptying small pipelines of Gaussian elimination for each plane. Because of the large amount of

idle time, the total time spent in the Z-solver was even more than the sum of those in the first two

directions. A slight load imbalance was also observed in this version.

The 2-D partition shows a similar behavior although the pipelines are shorter and appear

along both Y and Z directions. However, the total execution time is shorter than the 1-D partition,

primarily due to reduced idle time in the solver. The routine BC for boundary conditions performed

worse than in the 1-D version because TRIB (a routine inside BC) is called with partitioned data in

the 2-D version but with unpartitioned data in the 1-D version.

4



Version I, 1-D Partition

Version 1, 2-D Partition I _|____I

Figure 2: Space-time diagrams for the 1-D (upper panel) and the 2-D (lower panel)

partitioned versions of ARC3D. The time window is for one ADI iteration. Enlarged

areas show more details of the small pipelines in solving for different directions.

3.3 The Second Parallel Version

As shown in Figure 2, due to large number of small pipelines in the Y- and Z-solvers, the perfor-

mance of the first parallel version was not expected to be good. This will become very clear from

the performance data as discussed in Section 4. The bottleneck is due to the algorithm used in the

original serial version. In order to improve the performance and let CAPTools fully explore the

pipelining parallelism, it is necessary to modify the serial code.

The point where changes to the serial version were made is shown in Figure 3. The forming

and solving of penta-diagonal systems for 2-D planes (see Figure 1) were combined to 3-D grid

points for all three directions. In each direction of sweeping, we first form the Left-Hand-Side (LHS)

matrix elements for all grid points in 3-D, then call the "penta" solver to perform the Gaussian

elimination. This modification involved some loop regroupings and eliminated many repeated calls

to the "penta" routines. The fundamental algorithm (the ADI solver) was not altered in the code.

Because of the requirement of storing intermediate results for 3-D grid points (instead of 2-D in the

original version), the new version uses about twice as much memory as the original code. There

are now different "penta" routines used for different directions.

5



Therevisedversionof ARC3D(Version
2) wasparallelizedthrough CAPToolsin a
similar wayasdiscussedin the previoussec-
tion. Againweproducedparallelversionsfor
both 1-Dand 2-Dpartitions. The space-time
diagramsfor the newversionsareillustrated
in Figure4. Themain observationis that all
thesmallpipelinesshownin Version1arenow
groupedtogetherin thenewversionandthose
small idle spacesaremostly eliminated.The
changefor Version2 increasedthe granular-
ity ofthepipelinealgorithm,whichCAPTools
canautomaticallyexplore.Thepipelinesetup
and finish cannow be donefor a set of 2-D
planestogetherinsteadof oneplaneat atime,
asshownin theexpandeddisplayof Figure4.

(X)XIsolver:
formLHSfor(J,K,L)gridpoints
XPENTA--solveforaU5elems

(Y) ETA solver:

form LHS for (J,K,L) grid points

YPENTA -- solve for all 5 elems

(Z) ZETA solver:

form LHS for (J,K,L) grid points

ZPENTA -- solve for all 5 elems

Figure 3: Revised version of the three

solvers for exploring better pipelining

parallelism in the Gaussian elimination

stage.

Although there still exist white spaces due to the pipelining filling and emptying, the overall length

of the pipelines in one solver is much smaller, thus less amount of time for communication. The

performance of these versions will be compared in the next section.

Version 2, I-D Partition

Version 2, 2-D Partition

Figure 4: Space-time diagrams for the 1-D (upper panel) and the 2-D (lower panel)

partitioned versions of the revised ARC3D. The time window is for one ADI iteration.

Enlarged areas show more details of the pipelines in the Z direction. The pipelines due

to forward eliminations are grouped together, so are those from backward substitutions.



4 Performance Comparison

4.1 Single-Node Performance

The two parallel versions of ARC3D with 2-D partition (as discussed in Section 3) were tested

on a single CPU of the Origin2000. The 'pcsamp' profiling tool on the Origin2000 was used to

obtain statistics of individual routines. The results are summarized in Table 1. Overall, the single-

node performance of Version 2 is about a factor of two better than Version 1, mainly from the

improvements in STEPF3D and different PENTA routines. The improvements in Version 2 come from

two areas.

. In STEPF3D of Version 1, data were first copied to two-dimensional working arrays, the VPENTA

solver was then called before the solution was copied back. For the sweeps on the second and

third dimensions, the copying of 2-D arrays also involved array transposition, which was

cache unfriendly. The copying process apparently exhibited sizable overhead, as indicated by

a change of time from 33 seconds to 10 seconds in STEPF3D after the copy was eliminated in
Version 2.

. Many repeated calls to VPENTA and VPENTA3 within loops in Version 1 were combined into

one of each call to XPENTA, YPENTA, and ZPENTA in Version 2. This regroupment reduced the

routine calling overhead.

Table 1: Performance dal;a generated from the pcsamp profiling on a single CPU of

Origin2000 for two different versions of ARC3D.

Version 1 without loop regrouping Version 2 with loop regrouping

time(%) cum. time(%) procedure time(_o) cum. time(_o) procedure

33.05s(41.4) 33.05s(41..4) STEPF3D 10.44s(24.5) 10.44s(24.5) STEPF3D

10.48s(13.1) 43.53s(54.5) RHS 8.64s(20.3) 19.09s(44.9) RHS

7.06s(8.8) 50.59s(63.,1) FILTER3D 6.40s(15.0) 25.48s(59.9) FILTER3D

3.60s(4.5)

3.37s(4.2)

3.41s(4.3)

3.37s(4.2)

3.65s(4.6)

3.36s(4.2)

2.04s(2.6)

1.87s(2.3)

1.62s(2.0)

0.42s(0.5)

2.54s(3.2)

54.19s(67.9)

57.56s(72.[)

60.97s(76.4)
64.34s(80.'7)

67.99s(85.2)

71.35s(89A)

73.39s(91.9)

75.26s(94.3)

76.88s(96.3)

77.31s(96.8)

79.85s(100.0)

VPENTA_X

VPENTA3_X

VPENTAI

VPENTA3_Z

VPENTA_Y

VPENTA3_Y

TKINV

TK

NPINV

BC

others

3.68s(8.7)

2.90s(6.8)

2.65s(6.2)

1.83s(4.3)

1.76s(4.1)

1.52s(3.6)

0.37s(0.9)

2.34s(5.5)

29.16s(68.6)

32.06s(75.4)

34.71s(81.6)

36.54s(85.9)

38.30s(90.1)

39.82s(93.6)

40.19s(94.5)

42.53s(100.0)

XPENTA

ZPENTA

YPENTA

TKINV

TK

NPINV

BC

others

When we started testing the parallel codes generated in the first pass, we noticed that on a

single processor the 1-D partitioned code with a 64 × 64 × 64 grid size ran about 20% slower than the

2-D partition. Normally we wou[d expect opposite since the 2-D partition contains more overhead



dueto muchmorecheckson maskedstatementsand communicationcalls. After inspectingthe
generatedcodeswerealizedthat manymulti-dimensionaldataarraysin the 1-Dpartition hada
sizeof 64 for the first and seconddimensions,while the 2-D partition had 64 only for the first
dimensionof thesearrays (CAPToolspaddedthe partitioneddimensionsautomaticallywhenthe
reduced-memoryoptionwasused).Thesize64couldcausemanycacheconflictsin loopoperations
sincethe sizeof cachelines is usuallya multiple of 64 (e.g.64 for the L1 data cacheon the
Origin2000).Forloopsin thethird dimensionthe cache-lineaddressof manyarrayelementswould
bethe sameif both thefirst andseconddimensionshavea sizeof 64,asfor the 1-Dpartition. The
paddingin the seconddimensionfor the2-Dpartition wouldavoidsomeof thesecachecollisions,
resultingin a better performance.

In orderto verify this observation,wetook themodifiedserialversion(Version2) of ARC3D
andcomparedthecacheperformancewith andwithout paddingin thearraysize.In theunpadded
versionarraysaredeclaredas(64,64,64)whilein the paddedversionthe sizeof eachdimensionis
simply increasedto (65,65,65).Theperfex profilingtool on the Origin2000wasusedto gather
informationonperformancecounters.The resultis compiledin Table2. As wecanseefrom the
table, the impactof array paddingto the cacheperformanceis tremendous.The improvement
rangesfrom a factor of 2 to 7 for manycasesandwith a factorof 4.4for theoverallperformance.

Table2: Performancedata generatedfrom the perfex commandon a singleCPU of
Origin2000for the newserialversionof ARC3D with and without paddingin array
dimensions.

Cycles
L1cachemisses
L2 cachemisses
TLB misses
Qwordsrewritten from L1
Qwordsrewritten from L2
L1 CacheLineReuse
L2 CacheLineReuse
L1 CacheHit Rate
L2 Cache Hit Rate

MFLOPS (per process)

Version 2a Version 2b Improving

without padding with padding factor

180.9s

41.0(22.7%)

101.6(56.1%)

5.7(3.2%)

13.8(7.6%)

30.4(16.8%)

1.96

2.38

O.66

O.70

16.68

41.2s

11.4(27.7%)

13.8(33.5%)

6.4(15.4%)

4.3(10.5%)

5.0(12.1%)

9.58

5.93

0.91

0.86

73.84

4.39

3.59

7.36

(0.90)

3.18

6.09

4.89

2.49

0.25

0.16

4.43

Two common ways to optimize for cache involve rearranging cache dimensions for reuse and

padding common block and arrays to reduce cache conflict. The first technique rearranges array

dimensions to maximize the loop invariant references in the fastest-running, leftmost dimensions.

The second technique of padding array dimensions was used in the above example. Compilers

usually can perform common block padding automatically (via the '-03' option). However, it did

not improve performance as much for the current test case where multi-dimensional arrays are in

common blocks.

There is still room to improve the single-node performance. For example, in Table 2, Version

2b still has a 34% L2 cache miss rate and a 28% L1 cache miss rate. This could be improved by



moreaggressiveoptimizations,suchasloopsplitting, loopfusing,groupingstatements,etc. This
is beyondthe scopeof the currentinvestigation.ThestudybyTaft [4]reportedthat the optimized
versionachievedcloseto 100MFLOPS(million floatingpoint operationspersecond)on a single
processorin comparisonto 73.8MFLOPSin our case.

4.2 Parallel Performance

The scalabilityof the four parallelversions(Versions1 and 2 with 1-D and 2-D partitions) of
ARC3Dwastestedon both the Origin2000andthe CrayT3E.Two typesof CAPLib were used for

the test: an MPI implementation for Origin2000 and a SHMEM implementation for T3E. On the

T3E, the SHMEM Ct,PLib is 10 to 20% faster than the corresponding MPI version. The problem

size used in all tests is 64 x 64 x 64.

Both parallel versions produced from
6

the two passes described in Section 3 4
3

were tested on the two architectures. _ 2

In order to examine the effect of cache & 103

E 6
performance, arrays were padded in _:
Version 2 but not in Version 1. _ 2

The execution time and speedup
10 2

factor for different runs on number of 6
m 4

processors from 1 to 36 are summa- 3
2

rized in Figure 5. The green (dashed)

curves are results from the first par-

allel version (both I-D and 2-D par- 30

titions) of ARC3D, while the blue 2o

(solid) curves are results from the % 10

second improved version. To com- o.

pare the overhead introduced by CAP-
4

Tools, the execution times of the re- _- 3

vised serial version on a single proces- 2

sor are also plotted in Figure 5 as a
1

filled diamond for the Origin2000 and

a filled down-triangle for the T3E. The

opened diamond and down-triangle

are from the unpadded serial[ ver-

sion. The MFLOP value was obtained

from the hardware counter on the Ori-

gin2000 and MFLOPS was calculated

from the wall-clock time.

Figure 5:

--D-- l-D, Origin2000 /'A

--B-- 2-D, Origin2000 ,,,/A<_a
-_-- ,-D, Cray T3E /_/_

_O _
-.A-- 2-D, Cray T3E "_.'_ . Jd"
.... • _/ ,,4k-"

: _ .'l A" .

:.................................._ :::::_:_,?:._', :

",(,t ':_...... _. C

5.08
7.63
10.2

15.3

30.5

50.8
76.3
102

153

305

508

763
1017
1525

n
O
.J
IJ.

I i I i , I iii i I

2 3 4 5 6 10 20 30

Number of Processors

Execution time (upper part) and

speedup factor (lower part) for various parallel

versions of ARC3D on the Origin2000 and the

Cray T3E.

Several conclusions can be made from Figure 5.

1. The effect due to cache performance on a single processor in Version 1 progresses to a large

number of processors.



.

.

.

.

.

Version 1 does not scale well beyond 8 processors. The 2-D partition performs much better

than the 1-D partition for large number of processors. At 32 processors, the 2-D partition is

about 3 times faster than the 1-D partition on both machines.

Version 2 on one processor improves by a factor of 2 on the Origin2000 and 4 on the T3E

in comparison with the first version. The more dramatic change of performance on the T3E

may be due to the smaller cache size in the machine (see Section 2) as it translates into even

worse performance for the first version.

The new version scales much better for both 1-D and 2-D partitions and is from 5 to 16 times

better than Version 1 on 32 processors. The new 2-D partition has achieved a speedup of

30 for 36 processors on the T3E. The best execution time on the 32 Origin2000 processors

corresponds to a performance of 1500 MFLOPS, which is about half of what was achieved

by Jim Taft [4]. Programs ran slower (by a factor of two) on the T3E compared to on the

Origin2000, but scaled better on the T3E.

Very little overhead from CAPTools was observed. Both the 1-D and 2-D partitions of

Version 2 have similar single-node execution time which is very close to the result from the

serial version.

The pipeline algorithm scales very well up to 36 processors in the test case, although this

may not be true for even large number of processors. However, with increase of the problem

size, good results are still expected, especially for the 2-D partition.

5 Summary

The parallelization of ARC3D with CAPTools was relatively straightforward. The generated par-

allel version achieved reasonably well performance, for example, having a speedup of 30 for 36

T3E processors. However, this performance could not be obtained without modification of the

original serial code, in particular regrouping loops in the serial code to increase the granularity of

the pipeline algorithm. Performance tools (such as AIMS) are very important in helping pinpoint

performance bottlenecks.

The source-code transformation to the serial version as discussed in the report was performed

by hand at this point. However, this type of transformation can be implemented into tools like

CAPTools to help reduce tedious work. In many cases, improving serial code and performing

necessary code transformations are important parts for the automated parallelization process. User

intervention in many of these parts is still necessary. Nevertheless, useful software tools, such as

CAPTools, can help trim down many tedious parallelization details and improve the processing

efficiency. CAPTools is still envolving and will, hopefuly, be able to perform more complex source

code transformations in a later version.

The current work provides some details of what are involved in parallelizing a CFD applica-

tion. The experience will be useful for parallelization of even larger applications with computer-

aided tools. The future work will include study of more complex applications and any techniques

needed to help automated parallelization.

10



The authorswish to thankE. Evan,S. Johnsor_,and P.Leggettfor valuablediscussionon
parallelizingARC3Dand their supporton CAPTools.and M. Frumkinand A. Waheedfor their
valuablecommentson the repc.rt.

References

[I] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, "The NAS

Parallel Benchmarks 2.0," RNR-95-020, NASA Ames Research Center, 1995.

[2] M. Frumkin, M. Hribar, H. Jin, A. Waheed, and J. "fan, "A Comparison of Automatic Paral-

lelization Tools/Compilers on the SGI Origin2000 using the NAS Benchmarks," 1998.

[3] T.H. Pulliam, "Solution Methods In Computational Fluid Dynamics," Notes for the yon

Kdrmdn Institute For FlTtid Dynamics Lecture Series, Rhode-St-Genese, Belgium, 1986.

[4] J. Taft, "Initial SGI Origin2000 Tests Show Promise for CFD Codes," NAS News, July-August,

page 1, 1997.

[5] M. Cross, C.S. Ierotheou, S.P. Johnson, P. Legget, and E. Rvans, "Software Tools for Au-

tomating the Parallelisation of FORTRAN Computational Mechanics Codes," Parallel and

Distributed Processing for Computational Mechanics, 1997.

[6] J.C. Yan, S.R. Sarukkai: and P. Mehra, "Performance Measurement, Visualization and Mod-

eling of Parallel and Distiibuted Programs using the AIMS Toolkit," Software Practice _¢

Experience, Vol. 25, No. 4, pages 429-461, 1995.

11




